Write your name here								
Surname		Other name	es					
In the style of: Pearson Edexcel Level 1/Level 2 GCSE (9 - 1)	Centre Number		Candidate Number					
Mathematics Model ANSI-1605								
Grade 9 type questions								
			Higher Tier					
GCSE style questions arranged by topic			Paper Reference 1MA1/1H					
You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.								

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may not be used.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1 Solve the equation $\frac{x}{2} - \frac{2}{x+1} = 1$

(Total for Question 1 is 4 marks)

The diagram shows a solid wax cylinder.

Diagram NOT accurately drawn

(Total for Question 2 is 3 marks)

The cylinder has base radius 2x and height 9x.

The cylinder is melted down and made into a sphere of radius r.

Find an expression for r in terms of x.

Volume Cylinder

$$TT = 2 \times L$$
 $TT = 2 \times L$
 $TT = 2 \times R$
 $TT = 3 \times R$

(Total for Question 2 is 3 marks)

www.bland.in

Diagram NOT accurately drawn

ABCD is a square.

P and D are points on the y-axis.

A is a point on the x-axis.

PAB is a straight line.

The equation of the line that passes through the points A and D is y = -2x + 5

Find the length of *PD*.

Find the length of PD.

Coordinate at

$$A = 5 = 2.5$$
 $A = 5 = 2.5$

AB Perpendicular to

AD

Equation of AB

 $A = \frac{1}{2} = 2.5$
 A

(Total for Question 3 is 4 marks)

4

(a) On the grid, draw the graph of $x^2 + y^2 = 4$ radius = 54 = 1 CIRCLE. (2)

(b) On the grid, sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$

(Total for Question 4 is 4 marks)

Diagrams **NOT** accurately drawn

A cylinder has base radius x cm and height 2x cm.

A cone has base radius x cm and height h cm.

The volume of the cylinder and the volume of the cone are equal.

Find h in terms of x.

Give your answer in its simplest form.

Volume Cylinder

Volume Pyround

$$Tr^{2} \times h = Txx^{2} \times 2x$$
$$= 2Tx^{3}$$

$$\frac{1}{3} \times \Pi r^2 \times h = \frac{1}{3} \times \Pi \times \chi^2 \times h$$
$$= \frac{1}{3} \Pi \chi^2 h.$$

$$2x^3 = \frac{1}{3}x^2h$$

$$\div x^2 \qquad 2x = \frac{1}{3}h.$$

(Total for Question 5 is 3 marks)

www.bland.in

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$u=2\frac{1}{2},\ v=3\frac{1}{3}$$

$$U = \frac{5}{2} \qquad V = \frac{10}{3}$$

(a) Find the value of f.

$$\frac{1}{f} = \frac{1}{h} + \frac{1}{v} = \frac{2}{5} + \frac{3}{10} = \frac{4+3}{10} = \frac{7}{10}$$

$$\frac{1}{f} = \frac{7}{10} \qquad f = \frac{10}{7}$$

(b) Rearrange
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$F = \frac{7}{7}$$

to make u the subject of the formula.

Give your answer in its simplest form.

Diagram **NOT** accurately drawn

The diagram shows a solid cone and a solid hemisphere.

The cone has a base of radius x cm and a height of h cm.

The hemisphere has a base of radius x cm.

The surface area of the cone is equal to the surface area of the hemisphere.

Find an expression for h in terms of x.

SA Core

By Poltragorus

SA Herupphere

SA come = SA Herisphere

- TT22

 $L = \sqrt{x^2 + \mu^2}$

$$\frac{17n^2 + 17x \sqrt{2^2 + L^2}}{4 257r^2} = \frac{60000}{50000}$$

$$\frac{17r^2 + 217r^2}{17r^2} = \frac{17r^2}{17r^2}$$

TT22 + TT2 /22+12 = TTQ2 + 2TT22

$$\pi x \sqrt{2^2 + h^2} = 2\pi x^2$$

$$x \sqrt{2^2 + h^2} = 2x$$

$$x^2 + h^2 = 4x^2$$

$$k^2 = 3x^2$$

253

(Total for Question 7 is 4 marks)

Each equation in the table represents one of the graphs A to F.

Write the letter of each graph in the correct place in the table.

Equation	Graph		
$y = 4 \sin x^{\circ}$	F		
$y = 4 \cos x^{\circ}$	В		
$y = x^2 - 4x + 5$	Æ		
$y = 4 \times 2^x$	C		
$y = x^3 + 4$	D		
$y = \frac{4}{x}$	A		

www.bland.in

(Total for Question 8 is 3 marks)

9 Here is a shape ABCDE.

Diagram **NOT** accurately drawn

AB, BC and CD are three sides of a square.

BC = x cm.

AED is a semicircle with diameter AD.

The perimeter, P cm, of the shape ABCDE is given by the formula

$$P = 3x + \frac{\pi x}{2}$$

(a) Rearrange this formula to make x the subject.

$$P = 3n + \Pi x$$

$$\frac{2}{2}$$

$$2l = 6x + \Pi x$$
fuctionsi
$$2l = x (6 + \Pi)$$

$$\div (6 + \Pi)$$

$$2l = 2l$$

$$6 + \Pi$$

(2)

The area, $A ext{ cm}^2$, of this shape is given by $A = kx^2$ where k is a constant.

(b) Find the exact value of *k*. Give your answer in its simplest form.

A = Area
$$= 2^2 + \frac{1}{2} (\frac{2}{2})^2$$

Square Servacede $= 2^2 + \frac{1}{2} (\frac{2}{2})^2$
 $= 2^2 + \frac{1}{8}$
Factorise $A = 2^2 (1 + \frac{11}{8})$

$$|C = 1 + \Pi$$

$$\overline{S}$$
(3)

(Total for Question 9 is 5 marks)

10 Express the recurring decimal 0.213 as a fraction.

$$2 = 0.213$$

$$10x = 2.131$$

$$100x = 21.313$$

$$100x - x = 21.313 - 0.213$$

$$99x = 19.21.1$$

$$2 = 21.1$$

$$99 = 990.$$

(Total for Question 10 is 3 marks)

Diagram **NOT** accurately drawn

In the diagram, AB = BC = CD = DA.

Prove that triangle ADB is congruent to triangle CDB.

(Total for Question 11 is 3 marks)

12 Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

2 consecutive
numbers.

Sum n + n+1 = 2n+1.

2n us
always
always
odd

(Total for Question 12 is 3 marks)

13 The table shows information about the ages, in years, of 1000 teenagers.

Age (years)	13	14	15	16	17	18	19
Number of teenagers	158	180	165	141	131	115	110

Sophie takes a sample of 50 of these teenagers, stratified by age.

Calculate the number of 14 year olds she should have in her sample.

Sample of 14 year
$$= 180 \times \frac{50}{1000} = 9$$

9.

(Total for Question 13 is 2 marks)

14 P is inversely proportional to V.

When
$$V = 8$$
, $P = 5$

(a) Find a formula for P in terms of V.

$$Q = \frac{k}{\sqrt{k}}$$

$$3) \quad 5 = \frac{k}{8} \quad k = 4$$

$$P = 40$$

$$P = \frac{\rho}{\sqrt{2}} = \frac{40}{\sqrt{2}}$$
(3)

(b) Calculate the value of P when V = 2

$$P = \frac{40}{V} = \frac{40}{7} = \frac{20}{20}$$

(1)

(Total for Question 14 is 4 marks)

15

Diagram **NOT** accurately drawn

The diagram shows a regular hexagon and a square.

Calculate the size of the angle a.

150

(Total for Question 15 is 4 marks)

16

AE, DBG and CF are parallel.

DA = DB = DC.

Angle EAB = angle BCF = 38°

Work out the size of the angle marked x. You must show your working.

> Attachating Angles base anglés à l'acceles.

Angles a trougle
= 180°
Congruent
trougles
Angles at fourt

Angle BAG = ABD = 38° 6AD = A6D = 38°

$$ADB = 180 - 88 - 88$$

= 104°
 $CDB = ADB = 104^{\circ}$
 $x = 360 - 104 - 104 = 152$

(Total for Question 16 is 3 marks)

17 A(-2, 1), B(6, 5) and C(4, k) are the vertices of a right-angled triangle ABC. Angle ABC is the right angle.

Find an equation of the line that passes through A and C.

Give your answer in the form ay + bx = c where a, b and c are integers.

Sketch

and AB

gand CB (perpendicular) gand CB

So

×Z

and Ac

equation AC $M = \frac{4}{3}(x_{1}, y_{2}) = (4.9)$

×3

$$\frac{diff \, \text{ny}}{diff \, \text{nx}} = \frac{5-1}{6-2} = \frac{4}{8} = \frac{1}{2}$$

$$=-2 \qquad \left(\frac{1}{2} \times -2 = -1\right)$$

$$\frac{deff \, \text{lny}}{deff \, \text{lnx}} = \frac{5 - \text{lc}}{6 - 4} = \frac{5 - \text{lc}}{2}$$

$$\frac{5-k}{2} = -2$$

 $5-k = -2$
 $5-k = 9$

$$\frac{deff \, \text{ln} \, y}{deff \, \text{ln} \, x} = \frac{9-1}{4-2} = \frac{8}{6} = \frac{4}{3}$$

$$y-y_1 = M(x-x_1)$$

(Total for Question 17 is 5 marks)

$$3y-27 = 4x-16$$

 $3y-4x=11$.

www.bland.in

18 Here is a speed-time graph for a car journey. The journey took 100 seconds.

The car travelled 1.75 km in the 100 seconds.

Area = 1.75km = 1750 m

(a) Work out the value of V.

Work out the value of
$$V$$
.

Area Trapezuira
$$A = (a+b) \times h$$

$$A = 750 = (100+40) \times V$$

$$V = 1750 = 25 \text{ M/s}.$$
(3)

(b) Describe the acceleration of the car for each part of this journey.

0-205 constant acceleration

20-60s constant velocity (acceleration = 0)

60-1005 constant deceleration.

(2)

(Total for Question 18 is 5 marks)

19 In this question all dimensions are in centimetres.

A solid has uniform cross section.

The cross section is a rectangle and a semicircle joined together.

Work out an expression, in cm³, for the total volume of the solid.

Write your expression in the form $ax^3 + \frac{1}{b}\pi x^3$ where a and b are integers.

Volume of solud

(Total for Question 19 is 4 marks)

$$f(x) = 2x + c$$

$$g(x) = cx + 5$$

$$fg(x) = 6x + d$$

c and d are constants.

Work out the value of d.

$$fg(x) = 6x + d$$

 $fg(x) = 2(cx + 5) + c$
 $= 2cx + 10 + c$

comparing number
$$d = 10 + c$$

 $d = 10 + 3 = 13$

$$d = 10 + 3 = 13$$

d = 13.

(Total for Question 20 is 3 marks)